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A self-adaptive system view
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Self-adaptive software system

Environment
Non-controllable software, hardware, network, physical context, users
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From automation to autonomy

1. Automating tasks

7. Learn from experience

2. Architectural principles 3. Runtime models

6. Control principles5. Guarantees under 
uncertainty4. Requirements-driven 

adaptation

Danny Weyns, “An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective”, Wiley 2020

Higher degrees 
of autonomy

Less human effort in 
managing, optimizing, 
tuning  



NASA’s evolutionary stages

4From “Challenges and Opportunities in Robotic Space Exploration”, John Day, NASA
UKRI TAS Resilience Node Talk 7, April 2021, https://www.youtube.com/watch?v=yavzrbIqOkI

https://www.youtube.com/watch?v=yavzrbIqOkI


Complexity-productivity gap in the 
automotive industry

McKinsey & Company, “When code is king: Mastering automotive software excellence”, February 17, 2021 5



Main hypothesis

We cannot reach higher degrees of autonomy if 
we don’t enable systems to deal with situations 
not anticipated by their designers!
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The rest of the talk
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Two inspirational moments and 
the “research stories” that followed
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inspirational moment #1
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Consider adding a pinch of 
uncertainty to your systems 

You may find that they work better!

Maarten van Steen, ECSA 2015, keynote 



“Cleaning robots” system
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“Cleaning robots” system
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What if a robot cannot locate itself anymore?
What if the floor becomes too wet and 
slippery?
What if more robots join the group?
What if a robot is out of power?
What if some kids start playing with the robot?



Self-adaptation to the rescue?

Adjusting a system’s behavior and/or structure can indeed 
help
• Choosing a different sensor that provides the same values
• Choosing a different service with lower latency to call
• Reducing the motor speed 
• …
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However, designers have to anticipate all potential 
situations and actions!

Impractical, if not impossible, for many real-life systems



When self-adaptation is not enough…

Instead of trying to identify all potential situation-action 
pairs, we identify a number of them and then allow the 
actions to be slightly changed at runtime? 
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More situations (even unanticipated) could be handled

- The system may cope better with runtime uncertainty
- Increased homeostasis [ability for the system to maintain 
its normal operating state and implicitly repair 
abnormalities or deviations from expected behavior]

What if

Then

Finally



The big picture

Homeostasis layer introduces (a pinch of) 
uncertainty to the adaptation strategies  
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Illustration on Cleaning Robots
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Illustration on Cleaning Robots
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Illustration on Cleaning Robots
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Illustration on Cleaning Robots
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Robot
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…

(component)
Docking 
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dockedRobots
…

(component)
Docking 
Station

dockedRobots
…

component Robot features Dockable, Cleaner {
position: IPosition
dirtinessMap: IMap
targetPosition: IPosition
assignedDockingStationsPosition: IPosition
…
process move in mode Cleaning, Searching {
inputKnowledge = 

[position , targetPosition, dirtinessMap ]
outputKnowledge = [position, dirtinessMap]
function = {

position ← move (targetPosition) 
dirtinessMap ← update(position, dirtinessMap)

}
scheduling = periodic(100 ms)

} 
…

}



Illustration on Cleaning Robots
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Searching Cleaning

Charging
Approaching 

Dock

Queued

#dirtyTiles > 5 && energy > 20%

#dirtyTiles == 0

energy <=20%

#dockedRobots == 0

energy > 95%

#dockedRobots > 0

at_dock && 
#dockedRobots == 0

Self-adaptation mechanism #1: mode switching 
(Via mode-state machines attached to components)



Illustration on Cleaning Robots
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Illustration on Cleaning Robots
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Illustration on Cleaning Robots
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(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
CleaningPlanExclusion

ensemble DockingInformationExchange = {
coordinator = Dock
member = Dockable
membership = {

coordinator.dockedRobots.size() <= 3 
}
knowledge_exchange {

coordinator.dockedRobots ← member.id
member.assignedDockingStationPosition

← coordinator.position
}
scheduling = periodic(1000 ms)

}

Self-adaptation mechanism #2: 
ensembles



Homeostatic mechanism #1: 
Collaborative Sensing 

24
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Situation: 
A robot’s camera is broken à it 
cannot detect which tiles are 
dirty any more 

Solution:
Extend the self-adaptation 
mechanism of “ensembles” 
by creating a new ensemble 
that will copy the 
dirtinessMap of nearby robots

Available ensembles:
• CleaningPlanExclusion
• DockingInformationExchange

camera

• DirtinessMapExchange



Homeostatic mechanism #1: 
Collaborative Sensing 
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Situation: 
A robot’s camera is broken à it 
cannot detect which tiles are 
dirty any more 

Solution:
Extend the self-adaptation 
mechanism of “ensembles” 
by creating a new ensemble 
that will copy the 
dirtinessMap of nearby robots
Available ensembles:
• CleaningPlanExclusion
• DockingInformationExchange

camera

• DirtinessMapExchange

ensemble DirtinessMapExchange = {
coordinator = DirtinessMapRole
member = DirtinessMapRole
membership = {

close(coordinator.position, member.position)
and obsolete(coordinator.dirtinessMap) 

}
knowledge_exchange {

coordinator.dirtinessMap ←
member.dirtinessMap

}
scheduling = periodic(1000 ms)

}

How to create such an ensemble (one way):
- Store all data from all components 
- Identify correlations between data series (e.g. when positions of two 

robots are close, their dirtiness maps are “close” as well)
- Translate correlations to ensemble specifications 



Homeostatic mechanism #2: Faulty 
Component Isolation
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Situation: 
A docking station cannot charge 
docked robots anymore à a 
robot may still queue at a faulty 
docking station 
Solution:
Exclude DS1 from being 
coordinator of one of the 
instances of the ensemble (to 
isolate the problem)
Robot’s roles:
• Dockable
• Cleaner 
Docking station’s roles:
• Dock

(ensemble)
DockingInformationExchange

_______



Homeostatic mechanism #2: Faulty 
Component Isolation
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Homeostatic mechanism #3: 
Enhancing Mode Switching 
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Situation: 
Far more robots than docking 
stations à increased charging 
time because of queuing time

Solution:
Change the mode-state 
machine of robots to allow 
them to “break the regularity” 
in which robots go to recharge



Homeostatic mechanism #3: 
Enhancing Mode Switching 
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Homeostatic mechanism #3: 
Enhancing Mode Switching 
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time because of queuing time

Solution:
Change the mode-state 
machine of robots to allow 
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Searching Cleaning

Charging
Approaching 

Dock

Queued

#dirtyTiles > 5 && energy > 20% / 0.98

#dirtyTiles == 0 / 0.98

energy <=20% / 0.98

#dockedRobots == 0 
/ 0.97

energy > 95% / 0.97

#dockedRobots > 0 / 0.98

at_dock && 
#dockedRobots == 0 
/ 0.98



Experiments
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p=0.0001

1 - -

2 A robot’s dirtiness 
sensor malfunctions -

3 A robot’s dirtiness 
sensor malfunctions #1

4
A docking station 

emits wrong 
availability data

-

5
A docking station 

emits wrong 
availability data

#2

6
Too many robots 

w.r.t. docking 
stations

-

7
Too many robots 

w.r.t. docking 
stations

#3

8 All above -

9 All above all



What we learned

Introducing uncertainty to the system can 
indeed help (esp. considering the results  of 
enhanced mode switching)

Homeostatic mechanisms are specific to 
adaptation strategies -> hard to generalize

Expert domain knowledge is needed to specify 
and implement the mechanisms 

32
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inspirational moment #2
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… a balance where R&D 
teams build part of the 
functionality and set 
guardrails, and where smart 
systems experiment and 
adjust their responses and 
behaviors autonomously

Bosch and Olsson, “Data-Driven Continuous Evolution of Smart Systems”, SEAMS 2016



(My) definition of different 
experimentation types

▣Empirical experimentation
e.g. running a controlled experiment with students

▣Online experimentation 
e.g. A/B test at Google, Facebook, Netflix, …

▣Continuous experimentation 
e.g. bandit algorithms 

▣Automated experimentation
Bosch and Olsson’s vision 35



How to achieve “automated 
experimentation”?

- Self-adaptive system as reinforcement
learning system?

- Self-adaptive system that formulates and 
(statistically) tests hypotheses at runtime? 

- Self-adaptive system with the ability to
compare and use optimizers at will? 

- What about cost vs benefit of automated 
experimentation?  36
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Managed system: CrowdNav

routes

Vehicle Router

route randomization
exploration percentage
static info weight
dynamic info weight
exploration weight
data freshness threshold
re-routing frequency

[0-0.3]
[0-0.3]
[1-2.5]
[1-2.5]
[5-20]
[100-700]
[10-70]

Parameter Range

traffic 
info

Managing system

Monitor

Analyze Plan

Execute

number of cars, trip times, … router parameter values

Goal: Optimize trip times and router performance



The case of Optimizing CrowdNav

There are different environment 
situations e.g. high/low/normal traffic, 
blocked streets, … 
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Router

M

A P

EOptimization 
goals

Managed system: CrowdNav

Managing system

1
2 The managed system can have 

different configurations à valuations 
of router parameters

3 An optimal configuration minimizes 
trip times and minimizes the time 
spend in routing

5 It is difficult to enumerate all possible 
situations 

4 It is unlikely that an optimal 
configuration will work in all situations 



One way of optimizing CrowdNav
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Design-time

Specify all possible situations and their optimal configurations
• Enumerate them
• Specify permissible situations via a model (e.g. DTMC) 

Run-timeUse rules to apply situation-optimal configurations

-> difficult to derive (extensive 
simulations? detailed system model?)
-> difficult to extend (new situations? 
new configurations?)

+ -
-> easy to encode & interpret



Our way of optimizing CrowdNav
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Design-time

• Specify system input and output parameters & optimization 
goals

• Specify context (environment) parameters

Run-time

• Identify situations via the effect of context parameters 
on the outputs

• Use an optimization strategy to identify the optimal 
configuration for each identified situation at runtime  

“Planning as Optimization”



Planning as optimization: Overview
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Mode #1: 
Learning of 
situations via 
clustering

Mode #2: Situation-driven optimization 

Monitor 
context 

parameters

Determine 
current 

situation

Load optimal configuration 
(if known) for situation OR 

perform optimization

Apply optimal 
configuration Situations à optimal 

configurations

41

Router

Managed system: CrowdNav

ANALYSIS PLANNING



Mode #1: Learning of situations via 
clustering
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Goal of this mode
Determine situations via grouping together environment states 
based on the effect they have on system outputs 

Assumptions
Each context parameter has a number of states (e.g. ranges)
number_of_cars in [0,100], [101, 200], [201, 300], [301, ∞)
percentage_of_blocked_streets in [0,25], [26-50], [51-75], [76-100]

à All the possible environment states is the Cartesian product of the 
states of all context parameters

Method
Continuously collect values of system outputs and environment states
Compute (statistical) features for each state-dataset

e.g. mean, variance, 95th percentile, …
Use clustering at runtime to group environment states in situations



Evaluation of learning of situations 
via clustering

43

output parameter

context parameternumber_of_cars in [100-150], (151-200], ..., (751-800] 

trip_overhead: normalized trip duration

100-150 151-200 701-750 751-800…
state-datasets

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

features of 
state-datasets

k-means algorithm with k in 2..9 à Silhouette method to find best k



Evaluation of learning of situations 
via clustering
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output parameter

context parameternumber_of_cars in [100-150], (151-200], ..., (751-800] 

trip_overhead: normalized trip duration

100-150 151-200 701-750 751-800…
state-datasets

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

features of 
state-datasets

k-means algorithm with k in 2..9 à Silhouette method to find best k

1st cluster:  number of cars in 0..500     à “low traffic”
2nd cluster: number of cars in 501..700 à “medium traffic”
3rd cluster:  number of cars in 701..800 à “high traffic”



Mode #2: Situation-driven optimization 
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Goal of this mode
Determine optimal configurations via online search in the space of 
possible configurations for each situation

Assumptions
The optimization process can update the system configuration on the fly
The optimization process is not interrupted once started

Question
Which optimization algorithm guides the optimization process best?

à Many options: linear programming, genetic algorithms, local search, 
combinatorial optimization, stochastic optimization, …
à Depends on the managed system and the characteristics of the 
situations that it resides in



CrowdNav as a numeric optimization 
problem
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I.
Black-box 

(no known model that relates 
inputs to outputs)

III.
Expensive

(many samples needed to 
evaluate a configuration)

II.
High dimensional

(large space of 
configurations)

IV.
Multi-objective

(minimize both overhead 
and router performance) 46
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Managed system: CrowdNav

Managing system



Optimization algorithms considered 
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A solution (configuration) is modeled as a chromosome
Mutation, crossover operators
Fitness function evaluates a configuration and guides search 

Non-dominated 
Sorting Genetic 

Algorithm II 
(NSGA-II) Good for multi-objective evolutionary search

Given a number of steps, at each step, try a configuration, 
collect output values and fit a regression model (e.g. 
Gaussian process)

Bayesian 
optimization 

Good for expensive black-box optimization of continuous spaces

Similar to NSGA-II, but fitness measured based on novelty metricNovelty Search
Good for not being “stuck” in local optima 



Evaluation of situation-driven 
optimization (on CrowdNav) 
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Which optimization method is best for CrowdNav
…for each situation? 
…across all situations?

We compared the 3 methods (+ random search) 
based on
- solution quality: how well the two objectives 

are minimized
- convergence: how quickly the search 

stagnates
- overhead: memory and processor usage 

needed

…with a 100-step budget per 
optimization run
…with 30 replications or each 
run to obtain statistical validity
…for each of the three 
identified situations 



Results: solution quality
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Low traffic Medium traffic

High traffic



Results: convergence
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Low traffic Medium traffic

High traffic



Answering the research questions
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Which optimization method is best for CrowdNav
…for each situation? 
…across all situations?

Based on solution quality
NSGA-II performs better in “low” and “medium” traffic
Random search performs better in “high” traffic

Based on convergence
Bayesian optimization performs (slightly) better

Based on overhead
They are all equally good

Pareto-optimal configurations 
are spread all over the search 
space à Many local minima!



What we learned
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Clustering is a viable option for identifying 
situations (but needs to be done continuously)

Challenge: Automated comparison of optimizers 
(different evaluation criteria, unclear evaluation 
horizon)

Challenge: Lifecycle management of optimizers 
(they need to be started, paused, stopped, etc.)



Vision: Self-evolution 
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Environment

Managed system

Managing system

Evolution layer
Enhances adaptation in new/unanticipated cases

Available 
adaptation 

tactics
Experimentation 

strategies
Historical 

knowledge

- Catalog of 
adaptation 
tactics? 

- Add new 
tactics?

- When to start a new 
experimentation round 
(novelty detection)?

- Which strategy to use? 
- Guarantees?

- Forgetting 
learned 
knowledge?



(Some) research directions
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What about using algorithms that consider context 
changes (e.g. contextual bandits, contextual genetic 
algorithms)?

How to deal with the tradeoff between increased 
complexity of the system and its increased ability to deal 
with unanticipated situations (cost-benefit analysis)? 

How to devise a method for building (self-evolving) self-
adaptive systems? 



References

▣ Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, Alessia Knauss 
Architectural Homeostasis in Self-Adaptive Software-Intensive Cyber-Physical Systems 
10th European Conference on Software Architecture (ECSA'16) ▣ Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, Alessia Knauss 
Tuning Self-Adaptation in Cyber-Physical Systems through Architectural Homeostasis 
Elsevier's Journal of Systems and Software (JSS), Volume 148, February 2019, Pages 37-55▣Erik Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, Thomas Vogel 
Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime 
Situations 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems 
(SASO 2019)▣ Ilias Gerostathopoulos, Frantisek Plasil, Christian Prehofer, Janek Thomas, Bernd Bischl
Automated Online Experiment-Driven Adaptation–Mechanics and Cost Aspects 
IEEE Access

and other available at https://iliasger.github.io/publications/

55

https://iliasger.github.io/publications/

