
Strengthening self-adaptation in
the face of unanticipated situations

Ilias Gerostathopoulos
Assistant professor

Software and Sustainability Group
Computer Science Department

Vrije Universiteit Amsterdam
i.g.gerostathopoulos@vu.nl

CASA@ECSA 2021, 13th September 2021

A self-adaptive system view

2

Self-adaptive software system

Environment
Non-controllable software, hardware, network, physical context, users

Managed system
Controllable software – domain goals

affectinput

Managing system
Adaptation goals

monitor adapt

M
A P

E

From automation to autonomy

1. Automating tasks

7. Learn from experience

2. Architectural principles 3. Runtime models

6. Control principles5. Guarantees under
uncertainty4. Requirements-driven

adaptation

Danny Weyns, “An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective”, Wiley 2020

Higher degrees
of autonomy

Less human effort in
managing, optimizing,
tuning

NASA’s evolutionary stages

4From “Challenges and Opportunities in Robotic Space Exploration”, John Day, NASA
UKRI TAS Resilience Node Talk 7, April 2021, https://www.youtube.com/watch?v=yavzrbIqOkI

https://www.youtube.com/watch?v=yavzrbIqOkI

Complexity-productivity gap in the
automotive industry

McKinsey & Company, “When code is king: Mastering automotive software excellence”, February 17, 2021 5

Main hypothesis

We cannot reach higher degrees of autonomy if
we don’t enable systems to deal with situations
not anticipated by their designers!

6

The rest of the talk

7

Two inspirational moments and
the “research stories” that followed

Acknowledgement

This presentation is based on research
performed in collaboration with the following
great colleagues:
• Architecture homeostasis: Tomas Bures, Frantisek

Plasil, Dominik Skoda, Alessia Knauss
• Planning as Optimization: Erik Fredericks, Thomas

Vogel, Christian Krupitzer

8

9

inspirational moment #1

1010

Consider adding a pinch of
uncertainty to your systems

You may find that they work better!

Maarten van Steen, ECSA 2015, keynote

“Cleaning robots” system

11

“Cleaning robots” system

12

What if a robot cannot locate itself anymore?
What if the floor becomes too wet and
slippery?
What if more robots join the group?
What if a robot is out of power?
What if some kids start playing with the robot?

Self-adaptation to the rescue?

Adjusting a system’s behavior and/or structure can indeed
help
• Choosing a different sensor that provides the same values
• Choosing a different service with lower latency to call
• Reducing the motor speed
• …

13

However, designers have to anticipate all potential
situations and actions!

Impractical, if not impossible, for many real-life systems

When self-adaptation is not enough…

Instead of trying to identify all potential situation-action
pairs, we identify a number of them and then allow the
actions to be slightly changed at runtime?

14

More situations (even unanticipated) could be handled

- The system may cope better with runtime uncertainty
- Increased homeostasis [ability for the system to maintain
its normal operating state and implicitly repair
abnormalities or deviations from expected behavior]

What if

Then

Finally

The big picture

Homeostasis layer introduces (a pinch of)
uncertainty to the adaptation strategies

15

 coordinate

EMS

K
MA

P E

Homeostasis Layer

FCIA

K
MA

P E

CS

K
MA

P E
H-Adaptation

Manager

Business System

C1 C2

C3 C4

Modes

K
MA

P E

Adaptation Layer

Ensembles

K
MA

P E
Adaptation
Manager

 monitor
 monitor

monitor

 modify
 modify modify

Illustration on Cleaning Robots

16

 coordinate

EMS

K
MA

P E

Homeostasis Layer

FCIA

K
MA

P E

CS

K
MA

P E
H-Adaptation

Manager

Business System

C1 C2

C3 C4

Modes

K
MA

P E

Adaptation Layer

Ensembles

K
MA

P E
Adaptation
Manager

 monitor
 monitor

monitor

 modify
 modify modify

Adaptation layer:
2 adaptation strategies

Homeostasis layer:
3 homeostatic mechanisms

Illustration on Cleaning Robots

17

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

Illustration on Cleaning Robots

18

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

(component)
Docking
Station

dockedRobots
…

(component)
Docking
Station

dockedRobots
…

Illustration on Cleaning Robots

19

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

(component)
Robot

position
dirtinessMap
…

(component)
Docking
Station

dockedRobots
…

(component)
Docking
Station

dockedRobots
…

component Robot features Dockable, Cleaner {
position: IPosition
dirtinessMap: IMap
targetPosition: IPosition
assignedDockingStationsPosition: IPosition
…
process move in mode Cleaning, Searching {
inputKnowledge =

[position , targetPosition, dirtinessMap]
outputKnowledge = [position, dirtinessMap]
function = {

position ← move (targetPosition)
dirtinessMap ← update(position, dirtinessMap)

}
scheduling = periodic(100 ms)

}
…

}

Illustration on Cleaning Robots

20

Searching Cleaning

Charging
Approaching

Dock

Queued

#dirtyTiles > 5 && energy > 20%

#dirtyTiles == 0

energy <=20%

#dockedRobots == 0

energy > 95%

#dockedRobots > 0

at_dock &&
#dockedRobots == 0

Self-adaptation mechanism #1: mode switching
(Via mode-state machines attached to components)

Illustration on Cleaning Robots

21

(ensemble)
DockingInformationExchange

Illustration on Cleaning Robots

22

(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
CleaningPlanExclusion

Illustration on Cleaning Robots

23

(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
DockingInformationExchange

(ensemble)
CleaningPlanExclusion

ensemble DockingInformationExchange = {
coordinator = Dock
member = Dockable
membership = {

coordinator.dockedRobots.size() <= 3
}
knowledge_exchange {

coordinator.dockedRobots ← member.id
member.assignedDockingStationPosition

← coordinator.position
}
scheduling = periodic(1000 ms)

}

Self-adaptation mechanism #2:
ensembles

Homeostatic mechanism #1:
Collaborative Sensing

24

R2

R1

R3

DS1

DS2

Situation:
A robot’s camera is broken à it
cannot detect which tiles are
dirty any more

Solution:
Extend the self-adaptation
mechanism of “ensembles”
by creating a new ensemble
that will copy the
dirtinessMap of nearby robots

Available ensembles:
• CleaningPlanExclusion
• DockingInformationExchange

camera

• DirtinessMapExchange

Homeostatic mechanism #1:
Collaborative Sensing

25

R2

R1

R3

DS1

DS2

Situation:
A robot’s camera is broken à it
cannot detect which tiles are
dirty any more

Solution:
Extend the self-adaptation
mechanism of “ensembles”
by creating a new ensemble
that will copy the
dirtinessMap of nearby robots
Available ensembles:
• CleaningPlanExclusion
• DockingInformationExchange

camera

• DirtinessMapExchange

ensemble DirtinessMapExchange = {
coordinator = DirtinessMapRole
member = DirtinessMapRole
membership = {

close(coordinator.position, member.position)
and obsolete(coordinator.dirtinessMap)

}
knowledge_exchange {

coordinator.dirtinessMap ←
member.dirtinessMap

}
scheduling = periodic(1000 ms)

}

How to create such an ensemble (one way):
- Store all data from all components
- Identify correlations between data series (e.g. when positions of two

robots are close, their dirtiness maps are “close” as well)
- Translate correlations to ensemble specifications

Homeostatic mechanism #2: Faulty
Component Isolation

26

R2

R1

R3

DS1

DS2

Situation:
A docking station cannot charge
docked robots anymore à a
robot may still queue at a faulty
docking station
Solution:
Exclude DS1 from being
coordinator of one of the
instances of the ensemble (to
isolate the problem)
Robot’s roles:
• Dockable
• Cleaner
Docking station’s roles:
• Dock

(ensemble)
DockingInformationExchange

Homeostatic mechanism #2: Faulty
Component Isolation

27

R2

R1

R3

DS1

DS2

Situation:
A docking station cannot charge
docked robots anymore à a
robot may still queue at a faulty
docking station
Solution:
Exclude DS1 from being
coordinator of one of the
instances of the ensemble (to
isolate the problem)
Robot’s roles:
• Dockable
• Cleaner
Docking station’s roles:
• Dock

(ensemble)
DockingInformationExchange

Homeostatic mechanism #3:
Enhancing Mode Switching

28

R2

R1

R3

DS1

DS2

Situation:
Far more robots than docking
stations à increased charging
time because of queuing time

Solution:
Change the mode-state
machine of robots to allow
them to “break the regularity”
in which robots go to recharge

Homeostatic mechanism #3:
Enhancing Mode Switching

29

R2

R1

R3

DS1

DS2

Situation:
Far more robots than docking
stations à increased charging
time because of queuing time

Solution:
Change the mode-state
machine of robots to allow
them to “break the regularity”
in which robots go to recharge

Searching Cleaning

Charging
Approaching

Dock

Queued

#dirtyTiles > 5 && energy > 20%

#dirtyTiles == 0

energy <=20%

#dockedRobots == 0

energy > 95%

#dockedRobots > 0

at_dock &&
#dockedRobots == 0

Homeostatic mechanism #3:
Enhancing Mode Switching

30

R2

R1

R3

DS1

DS2

Situation:
Far more robots than docking
stations à increased charging
time because of queuing time

Solution:
Change the mode-state
machine of robots to allow
them to “break the regularity”
in which robots go to recharge

Searching Cleaning

Charging
Approaching

Dock

Queued

#dirtyTiles > 5 && energy > 20%

#dirtyTiles == 0

energy <=20%

#dockedRobots == 0

energy > 95%

#dockedRobots > 0

at_dock &&
#dockedRobots == 0

Searching Cleaning

Charging
Approaching

Dock

Queued

#dirtyTiles > 5 && energy > 20% / 0.98

#dirtyTiles == 0 / 0.98

energy <=20% / 0.98

#dockedRobots == 0
/ 0.97

energy > 95% / 0.97

#dockedRobots > 0 / 0.98

at_dock &&
#dockedRobots == 0
/ 0.98

Experiments

31

p=0.0001

1 - -

2 A robot’s dirtiness
sensor malfunctions -

3 A robot’s dirtiness
sensor malfunctions #1

4
A docking station

emits wrong
availability data

-

5
A docking station

emits wrong
availability data

#2

6
Too many robots

w.r.t. docking
stations

-

7
Too many robots

w.r.t. docking
stations

#3

8 All above -

9 All above all

What we learned

Introducing uncertainty to the system can
indeed help (esp. considering the results of
enhanced mode switching)

Homeostatic mechanisms are specific to
adaptation strategies -> hard to generalize

Expert domain knowledge is needed to specify
and implement the mechanisms

32

33

inspirational moment #2

34

… a balance where R&D
teams build part of the
functionality and set
guardrails, and where smart
systems experiment and
adjust their responses and
behaviors autonomously

Bosch and Olsson, “Data-Driven Continuous Evolution of Smart Systems”, SEAMS 2016

(My) definition of different
experimentation types

▣Empirical experimentation
e.g. running a controlled experiment with students

▣Online experimentation
e.g. A/B test at Google, Facebook, Netflix, …

▣Continuous experimentation
e.g. bandit algorithms

▣Automated experimentation
Bosch and Olsson’s vision 35

How to achieve “automated
experimentation”?

- Self-adaptive system as reinforcement
learning system?

- Self-adaptive system that formulates and
(statistically) tests hypotheses at runtime?

- Self-adaptive system with the ability to
compare and use optimizers at will?

- What about cost vs benefit of automated
experimentation? 36

37

Managed system: CrowdNav

routes

Vehicle Router

route randomization
exploration percentage
static info weight
dynamic info weight
exploration weight
data freshness threshold
re-routing frequency

[0-0.3]
[0-0.3]
[1-2.5]
[1-2.5]
[5-20]
[100-700]
[10-70]

Parameter Range

traffic
info

Managing system

Monitor

Analyze Plan

Execute

number of cars, trip times, … router parameter values

Goal: Optimize trip times and router performance

The case of Optimizing CrowdNav

There are different environment
situations e.g. high/low/normal traffic,
blocked streets, …

38

Router

M

A P

EOptimization
goals

Managed system: CrowdNav

Managing system

1
2 The managed system can have

different configurations à valuations
of router parameters

3 An optimal configuration minimizes
trip times and minimizes the time
spend in routing

5 It is difficult to enumerate all possible
situations

4 It is unlikely that an optimal
configuration will work in all situations

One way of optimizing CrowdNav

39

Design-time

Specify all possible situations and their optimal configurations
• Enumerate them
• Specify permissible situations via a model (e.g. DTMC)

Run-timeUse rules to apply situation-optimal configurations

-> difficult to derive (extensive
simulations? detailed system model?)
-> difficult to extend (new situations?
new configurations?)

+ -
-> easy to encode & interpret

Our way of optimizing CrowdNav

40

Design-time

• Specify system input and output parameters & optimization
goals

• Specify context (environment) parameters

Run-time

• Identify situations via the effect of context parameters
on the outputs

• Use an optimization strategy to identify the optimal
configuration for each identified situation at runtime

“Planning as Optimization”

Planning as optimization: Overview

41

Mode #1:
Learning of
situations via
clustering

Mode #2: Situation-driven optimization

Monitor
context

parameters

Determine
current

situation

Load optimal configuration
(if known) for situation OR

perform optimization

Apply optimal
configuration Situations à optimal

configurations

41

Router

Managed system: CrowdNav

ANALYSIS PLANNING

Mode #1: Learning of situations via
clustering

42

Goal of this mode
Determine situations via grouping together environment states
based on the effect they have on system outputs

Assumptions
Each context parameter has a number of states (e.g. ranges)
number_of_cars in [0,100], [101, 200], [201, 300], [301, ∞)
percentage_of_blocked_streets in [0,25], [26-50], [51-75], [76-100]

à All the possible environment states is the Cartesian product of the
states of all context parameters

Method
Continuously collect values of system outputs and environment states
Compute (statistical) features for each state-dataset

e.g. mean, variance, 95th percentile, …
Use clustering at runtime to group environment states in situations

Evaluation of learning of situations
via clustering

43

output parameter

context parameternumber_of_cars in [100-150], (151-200], ..., (751-800]

trip_overhead: normalized trip duration

100-150 151-200 701-750 751-800…
state-datasets

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

features of
state-datasets

k-means algorithm with k in 2..9 à Silhouette method to find best k

Evaluation of learning of situations
via clustering

44

output parameter

context parameternumber_of_cars in [100-150], (151-200], ..., (751-800]

trip_overhead: normalized trip duration

100-150 151-200 701-750 751-800…
state-datasets

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

average
median
75th percentile
90th percentile
variance
standard deviation

features of
state-datasets

k-means algorithm with k in 2..9 à Silhouette method to find best k

1st cluster: number of cars in 0..500 à “low traffic”
2nd cluster: number of cars in 501..700 à “medium traffic”
3rd cluster: number of cars in 701..800 à “high traffic”

Mode #2: Situation-driven optimization

45

Goal of this mode
Determine optimal configurations via online search in the space of
possible configurations for each situation

Assumptions
The optimization process can update the system configuration on the fly
The optimization process is not interrupted once started

Question
Which optimization algorithm guides the optimization process best?

à Many options: linear programming, genetic algorithms, local search,
combinatorial optimization, stochastic optimization, …
à Depends on the managed system and the characteristics of the
situations that it resides in

CrowdNav as a numeric optimization
problem

46

I.
Black-box

(no known model that relates
inputs to outputs)

III.
Expensive

(many samples needed to
evaluate a configuration)

II.
High dimensional

(large space of
configurations)

IV.
Multi-objective

(minimize both overhead
and router performance) 46

Router

M

A P

EOptimization
goals

Managed system: CrowdNav

Managing system

Optimization algorithms considered

47

A solution (configuration) is modeled as a chromosome
Mutation, crossover operators
Fitness function evaluates a configuration and guides search

Non-dominated
Sorting Genetic

Algorithm II
(NSGA-II) Good for multi-objective evolutionary search

Given a number of steps, at each step, try a configuration,
collect output values and fit a regression model (e.g.
Gaussian process)

Bayesian
optimization

Good for expensive black-box optimization of continuous spaces

Similar to NSGA-II, but fitness measured based on novelty metricNovelty Search
Good for not being “stuck” in local optima

Evaluation of situation-driven
optimization (on CrowdNav)

48

Which optimization method is best for CrowdNav
…for each situation?
…across all situations?

We compared the 3 methods (+ random search)
based on
- solution quality: how well the two objectives

are minimized
- convergence: how quickly the search

stagnates
- overhead: memory and processor usage

needed

…with a 100-step budget per
optimization run
…with 30 replications or each
run to obtain statistical validity
…for each of the three
identified situations

Results: solution quality

49

Low traffic Medium traffic

High traffic

Results: convergence

50

Low traffic Medium traffic

High traffic

Answering the research questions

51

Which optimization method is best for CrowdNav
…for each situation?
…across all situations?

Based on solution quality
NSGA-II performs better in “low” and “medium” traffic
Random search performs better in “high” traffic

Based on convergence
Bayesian optimization performs (slightly) better

Based on overhead
They are all equally good

Pareto-optimal configurations
are spread all over the search
space à Many local minima!

What we learned

52

Clustering is a viable option for identifying
situations (but needs to be done continuously)

Challenge: Automated comparison of optimizers
(different evaluation criteria, unclear evaluation
horizon)

Challenge: Lifecycle management of optimizers
(they need to be started, paused, stopped, etc.)

Vision: Self-evolution

53
Environment

Managed system

Managing system

Evolution layer
Enhances adaptation in new/unanticipated cases

Available
adaptation

tactics
Experimentation

strategies
Historical

knowledge

- Catalog of
adaptation
tactics?

- Add new
tactics?

- When to start a new
experimentation round
(novelty detection)?

- Which strategy to use?
- Guarantees?

- Forgetting
learned
knowledge?

(Some) research directions

54

What about using algorithms that consider context
changes (e.g. contextual bandits, contextual genetic
algorithms)?

How to deal with the tradeoff between increased
complexity of the system and its increased ability to deal
with unanticipated situations (cost-benefit analysis)?

How to devise a method for building (self-evolving) self-
adaptive systems?

References

▣ Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, Alessia Knauss
Architectural Homeostasis in Self-Adaptive Software-Intensive Cyber-Physical Systems
10th European Conference on Software Architecture (ECSA'16) ▣ Ilias Gerostathopoulos, Dominik Skoda, Frantisek Plasil, Tomas Bures, Alessia Knauss
Tuning Self-Adaptation in Cyber-Physical Systems through Architectural Homeostasis
Elsevier's Journal of Systems and Software (JSS), Volume 148, February 2019, Pages 37-55▣Erik Fredericks, Ilias Gerostathopoulos, Christian Krupitzer, Thomas Vogel
Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime
Situations 13th IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2019)▣ Ilias Gerostathopoulos, Frantisek Plasil, Christian Prehofer, Janek Thomas, Bernd Bischl
Automated Online Experiment-Driven Adaptation–Mechanics and Cost Aspects
IEEE Access

and other available at https://iliasger.github.io/publications/

55

https://iliasger.github.io/publications/

